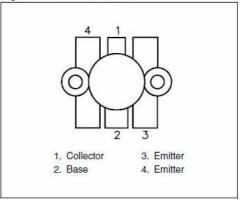

RF2127 RF POWER BIPOLAR TRANSISTORS VHF MOBILE APPLICATIONS

FEATURES SUMMARY


- ∎175 MHz
- ∎12.5 VOLTS
- ■COMMON EMITTER
- ■POUT = 100 W MIN. WITH 6.0 dB GAIN

DESCRIPTION

Figure 2. Pin Connection

The RF2127 is a 12.5 V Class C epitaxial silicon NPN planar transistor designed primarily for VHF FM communications. This device utilizes diffused emitter resistors to withstand extremely high VSWR under rated operating conditions, and is internally input matched to optimize power gain and efficiency over the 136 - 175 MHz band.

Table 1. Order Codes

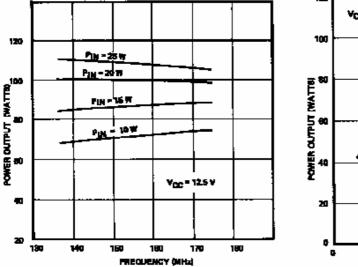
Order Codes	Marking	Package	Packaging
RF2127	RF2127	M111	PLASTIC TRAYS

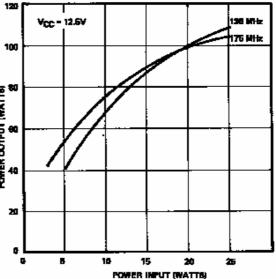
Symbo	Parameter	Value	Unit	
Vcbo	Collector-Base Voltage	36	V	
VCEO	Collector-Emitter Voltage	18	V	
VCES	Collector-Emitter Voltage	36	V	
VEBO	Emitter-Base Voltage	4.0	V	
c	Device Current	20	А	
PDISS	Power Dissipation	270	w	
TJ	Junction Temperature	+200	°C	
TSTG	Storage Temperature	- 65 to +150	°C	
IERMAL DA	ATA			
R _{TH(j-c)}	Junction-Case Thermal Resistance	0.65	°C/W	

ABSOLUTE MAXIMUM RATINGS (T_{case} = 25°C)

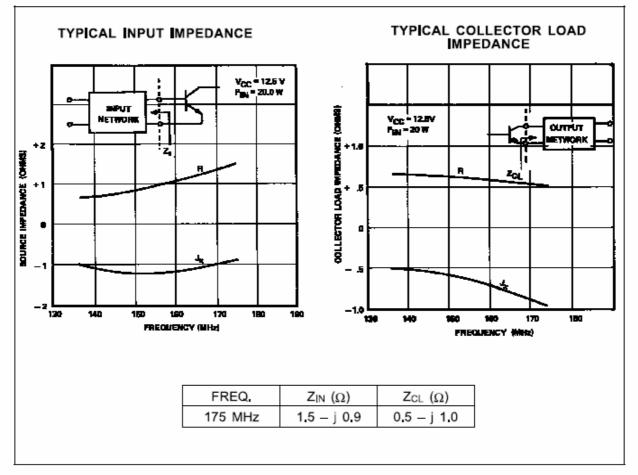
ELECTRICAL SPECIFICATIONS (Te	case = 25°C)
-------------------------------	--------------

STATIC


Symbol	Test Conditions	Value			Unit
	Test Conditions		Тур.	Max.	onit
ВVсво	$I_{\rm C} = 50 \text{mA}$ $I_{\rm E} = 0 \text{mA}$	36	—	—	V
BVCES	$I_C = 100 \text{mA}$ $V_{BE} = 0 \text{V}$	36	—	_	V
BVCEO	$I_{\rm C} = 100 \text{mA}$ $I_{\rm B} = 0 \text{mA}$	18	—		V
BVEBO	$I_E = 10 \text{mA}$ $I_C = 0 \text{mA}$	4.0	—	_	V
CES	$V_{CE} = 15V$ $I_E = 0mA$			15	mA
hFE	$V_{CE} = 5V$ $I_C = 5A$	10	_	_	_


DYNAMIC

Symbol	Test Conditions			Value			
Symbol	Symbol Test conditions			Min.	Тур.	Max.	Unit
Pout	f = 175 MHz	$P_{IN} = 25 \text{ W}$	$V_{CC} = 12.5 V$	100	—		w
GP	f = 175 MHz	$P_{IN} = 25 W$	Vcc = 12.5 V	6.0	—		dB
Сов	f = 1 MHz	$V_{CB}=12.5\ V$			350		pF


POWER OUTPUT vs FREQUENCY

POWER OUTPUT vs POWER INPUT

MPEDANCE DATA

